Powder Bed Fusion: Difference between revisions

From Omic-AM
Jump to navigation Jump to search
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 40: Line 40:
|Requires
|Requires
|Quotes
|Quotes
|-
|Weight(kg)
|4635
|1060
|-
|Build rate (cm^3/hr)
|20
|120
|}
|}
[[File:Dmp-flex-350.webp|none|thumb|Dmp-flex-350]]
[[File:Dmp-flex-350.webp|none|thumb|[https://www.3dsystems.com/3d-printers/dmp-flex-350 Dmp-flex-350]]]
{| class="wikitable"
{| class="wikitable"
!Build volume  
!Build volume  
Line 47: Line 55:
!resolution
!resolution
!size xyz
!size xyz
!Price
!Weight
|-
|-
|275/275/420mm
|275/275/420mm
Line 52: Line 62:
|.005mm
|.005mm
| 2370/2400/3470mm
| 2370/2400/3470mm
|}[[File:SPro 230.webp|none|thumb|SPro 230<nowiki/>https://support.3dsystems.com/s/3d-printers/spro-140-and-230?language=en_US]]
|Requires Quote
|4200
|}[[File:SPro 230.webp|none|thumb|[https://support.3dsystems.com/s/3d-printers/spro-140-and-230?language=en_US SPro 230]<nowiki/>]]


{| class="wikitable"
{| class="wikitable"
Line 60: Line 72:
!Size xyz
!Size xyz
!Power
!Power
!Price
!Weight
|-
|-
|256/256/256mm
|256/256/256mm
Line 66: Line 80:
| 386/389/458mm
| 386/389/458mm
|350W
|350W
|Requires Quote
|2541
|}
|}
== Technologies ==
== Technologies ==

Latest revision as of 08:06, 16 October 2023

Process description

PXL 20230828 231728663.jpg

Powder bed fusion is primarily used to build metal parts, although other materials may be used. Powder bed fusion works by spreading a layer of powdered material over the entire print surface and then using a laser to selectively melt sections together. Another layer is then added on top of the last and the process is repeated until the part is complete. After the part is built, it must be thoroughly cleaned and scrubbed to remove excess powder.

Strengths & Weaknesses

Strengths

  • Built in support system: The excess powder supports the print so there's no need to add printed supports, enabling the building of more complex geometries while maintaining consistent surface finish throughout the part.
  • Small footprint: Powder bed fusion machines frequently have a small footprint, and can be added into most workplaces. This allows for organizations to create metal prototypes in house.

Weaknesses

  • High energy use: Melting metal with a laser takes significant energy.
  • Surface finish: Powder bed fusion generally has a rough surface finish.
  • Material properties: This process produces a weaker grain structure compared to parts cast from the same material.
PXL 20230828 232002915.jpg
PXL 20230817 210159504.jpg

Machine Ranges

Overall, this technology can produce smaller parts with high dimensional accuracy. Powder bed fusion printers are on the more expensive side and require quotes from individual companies. Our research indicates these machines are on the order of $1,600,000.

Worst Best
volume X/Y/Z (mm) 250/250/325 800/400/500
resolution (mm) .1 .06
layer height (um) 120 20
price ($) Requires Quotes
Weight(kg) 4635 1060
Build rate (cm^3/hr) 20 120
Build volume layer Height resolution size xyz Price Weight
275/275/420mm 60um .005mm 2370/2400/3470mm Requires Quote 4200
Build Volume Layer Height Resolution Size xyz Power Price Weight
256/256/256mm 50um .2mm 386/389/458mm 350W Requires Quote 2541

Technologies

There are two main classes of Powder Bed Fusion printers that describe the laser process and typically indicate the type of materials it uses.

Selective Laser Sintering (SLS): This is the general term for non-metal powder bed fusion technologies. The term indicates that the heat source only adds enough energy to fuse the powder instead of fully melting it. SLS printing can provide improved capabilities when compared to material extrusion for softer materials such as as nylon or softer thermoplastics.

Selective Laser Melting (SLM): In contrast to SLS, SLM refers to processes of metal powder bed fusion. The energy added completely melts the material, making the internal structure more homogenous. This technique produces fully metal prototypes relatively easily.

Navigation

References

Rosen, Stucker, and Khorasani, Additive Manufacturing Technologies, chap. 5.

“Powder Bed Fusion - DMLS, SLS, SLM, MJF, EBM | Make.” Accessed October 6, 2023. https://make.3dexperience.3ds.com/processes/powder-bed-fusion.